Complex Numbers 1

- a. Find the modulus and argument of the complex numbers: (i) $5 - 5\sqrt{3i}$ (ii) (3 - i)(2 + 3i)
- b. Express $z = \frac{4+2i}{3-i}$ in the form x + iy and indicate z and its complex conjugate, \overline{z} on an Argand diagram.
- 2. Solve the equation $z^2 + 2z + 5 = 0$ and illustrate the solutions on the Argand diagram.
- 3. Find the modulus and argument of the complex number 1 $\sqrt{3}i$
- 4. Given that z = 1 + i is a root of the equation $z^4 + 3z^2 6z + 10 = 0$ find the other roots.
- 5. A complex number *z* can be written as $z = (1 + ic)^6$.
 - a) Expand z in powers of c.
 - b) Find the 5 real values of c for which z is real.

1.